Year Group	Subject	Topic
4	Mathematics	Addition and Subtraction

What does addition and subtraction consist of?

In Year 4, pupils will learn to solve addition and subtraction problems involving numbers up to four digits They will use a variety of different methods, including using objects, diagrams, and formal written methods like column addition and column subtraction.

Pupils are expected to
These are problems that need two different calculations to be completed before you reach the answer. A two-step work problem might have two different operations (for example, addition and subtraction) or two of the same operation (for example, subtraction and subtraction).

Pupils will need to figure out which operations they need for the problem. They will need to be able to choose an efficient method to solve the problem and to be able to check their answer using a different method. When pupils have solved a problem, they will need to use their mathematical reasoning to explain how they solved it and why they used a particular method.

Key Vocabulary
Add
Total
Plus
Sum
More
Altogether
Difference
Subtract
Less
Minus
Take away
Mentally, Orally
Column Addition
Column Subtraction
Exchange
Estimate
Inverse operation
Solve problems
Number facts

Add 4-digit numbers

No exchange
5162
$+3427$
Starting with the ones, add each column in turn.

One exchange

Starting with the ones, add each
5162 column in turn. When adding
+34976 tens +9 tens $=15$ tens
8659
$=1$ hundred +5 tens
Place 1 hundred under the hundreds answer and 5 tens in the answer.

Multiple exchanges
5864 Starting with the ones, add each
+3497 column in turn. Exchange tens, hundreds and/ or thousands as required.

Subtract 4-digit numbers

No exchange

5789
-3421
2368
:---
each column in turn.

One exchange

$$
\begin{array}{r}
61 \\
5749 \\
-3471 \\
\hline 2278
\end{array}
$$

Starting with the ones, subtract each column in turn. When subtracting 4

$$
-3471 \text { tens }-7 \text { tens, exchange } 1 \text { hundred to }
$$ make: 14 tens -7 tens $=7$ tens

Multiple exchanges

$$
\begin{array}{ll}
\begin{array}{l}
6131 \\
5 \times 4.42
\end{array} & \begin{array}{l}
\text { Starting with the ones, subtract } \\
\text { each column in turn. Exchange }
\end{array} \\
-3476 & \begin{array}{l}
\text { tens, hundreds and/ or thousands }
\end{array} \\
\hline 2266 & \text { as required. }
\end{array}
$$

Calculate 6000-3617 = 2383
Efficient subtraction

3803002000	
$\sim \sim$	
$3617 \quad 3620 \quad 3700 \quad 4000$	6000

Add and Subtract $1 \mathrm{~s}, 10 \mathrm{~s}, 100 \mathrm{~s}, 1000 \mathrm{~s}$	Round to Estimate	
Here is the number 3124 Add 2 thousands $=5124$ Add 5 hundreds $=5624$ Subtract 2 tens $=5604$ Add 5 ones $=5609$ Here is the number 6708	$1635+386=2021$ Round to the nearest ten $1640+390=2030$ Round to the nearest hundred $1600+400=2000$ Both give a reasonable estimate, but rounding the nearest ten is more accurate.	$9362-5729=3622$ Round to the nearest hundred $9400-5700=3700$ Round to the nearest thousand $9000-6000=3000$ Rounding to the nearest hundred is much more accurate in this case.
Thousands Hundreds Tens Ones 6 7 0 8	Checking Strategies	
Add 3 thousands $=9708$ Subtract 4 hundreds $=9308$ Add 5 tens $=9358$ Subtract 7 ones $=9351$ Crossing ones, tens or hundreds $\begin{array}{ll} 5392+4 \text { tens }=5432 & \text { crossing tens } \\ 5126-600=4526 & \text { crossing hundreds } \end{array}$ When crossing ones, tens or hundreds, more than one digit will change. twinkl	Using Inverse This part whole shows the inverse calculations using these three numbers.	Adding in a different order $420+372+280=$ Change to $420+280+372=$ As $420+280=700$ (because $42+28=70$) $420+280+372=700+372=1072$

