1) a) $x+3=8$ is A
b) The other representations show the following equations:

B: $3 x=9$
C: $x+3=6$
c) $x+3=8, x=5 \quad 3 x=9, x=3 \quad x+3=6, x=3$
2) a) $x=12 \square y=11$
b) $x=20<y=21$
c) $x=14 \quad y=14$
3) a) $x+127=200$
b) $x-95=74$
$x=74+95$
$x=169$
c) $10 x=65$
$x=65 \div 10$
$x=6.5$

1) The value of x in both equations is 50.5.
2) a) Nishi is incorrect as the right hand side of the balance shows $3 x=45$ and the expression she has written totals ५५.
b) Accept any expressions totalling 45 e.g. $20+25,100-55,135 \div 3,9 \times 5$.
3) The first equation does not match as the bar model shows $x+3=30$.

The second equation matches as the bar model shows $x+15=30$.
The third equation does not match as the bar model shows $3 x=30$.

1) There are 6 possible values for x therefore 6 different equations:
$16-12.5=3.5$
$25-12.5=12.5$
$36-12.5=23.5$
$49-12.5=36.5$
$64-12.5=51.5$
$81-12.5=68.5$
2) Open ended question. The purpose of the question is to get children to create one-step equations, however some might extend their learning to create two-step equations. Possible answers could include:
$4 x=16, x=4$ or $24-x=8, x=16$
3) Using the given heights of sunflower A and B we can find the value of x :
$x+25=73 \mathrm{~cm}$
$x=73-25$
$x=48 \mathrm{~cm}$
We can now find the height of sunflower D:
$100-x=$?
$100-48=52 \mathrm{~cm}$
Now that we know the height of sunflowers A, B and D we can subtract these from the total height of 235 cm to find the height of sunflower C :
```
235cm}-198\textrm{cm}=37\textrm{cm
```

sunflower C is 37 cm in height.

